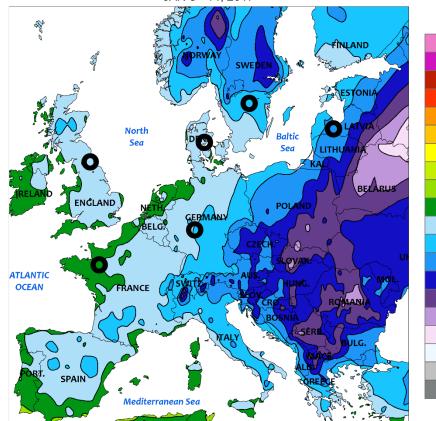


Modelling growth performance of pigs and within-room thermal balance in different local conditions



N. QUINIOU, A. CADERO, M. MARCON, L. BROSSARD

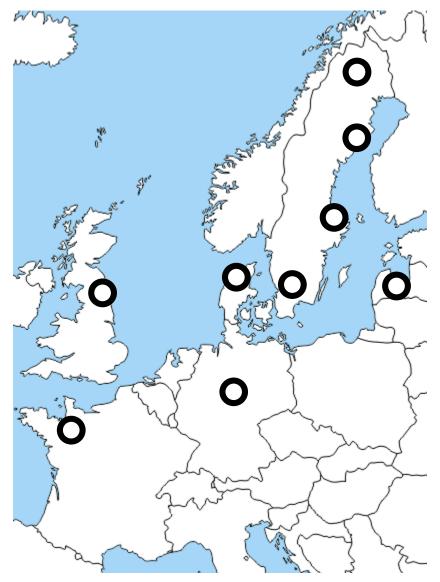
A.-C. OLSSON, K.-H. JEPPSSON

Introduction

Extreme Minimum Temperature (C) JAN 8 - 14, 2017

From NOAA / National Weather Service

Pig farms can be found everywhere in Europe with different types of building, management rules under different climates


→ factors that influence performance, welfare...

PIGSYS project (8 partners from 6 countries):

⇒ Improving pig system performance through a whole system approach, based on the integration of available information in a decision support system

Local conditions of production

Based on a survey performed by the partners in 6 european countries

- climate
- barn characteristics (size, insulation, equipment...)
- indoor management rules (temperature, T)
- type of pigs
- feeding strategies

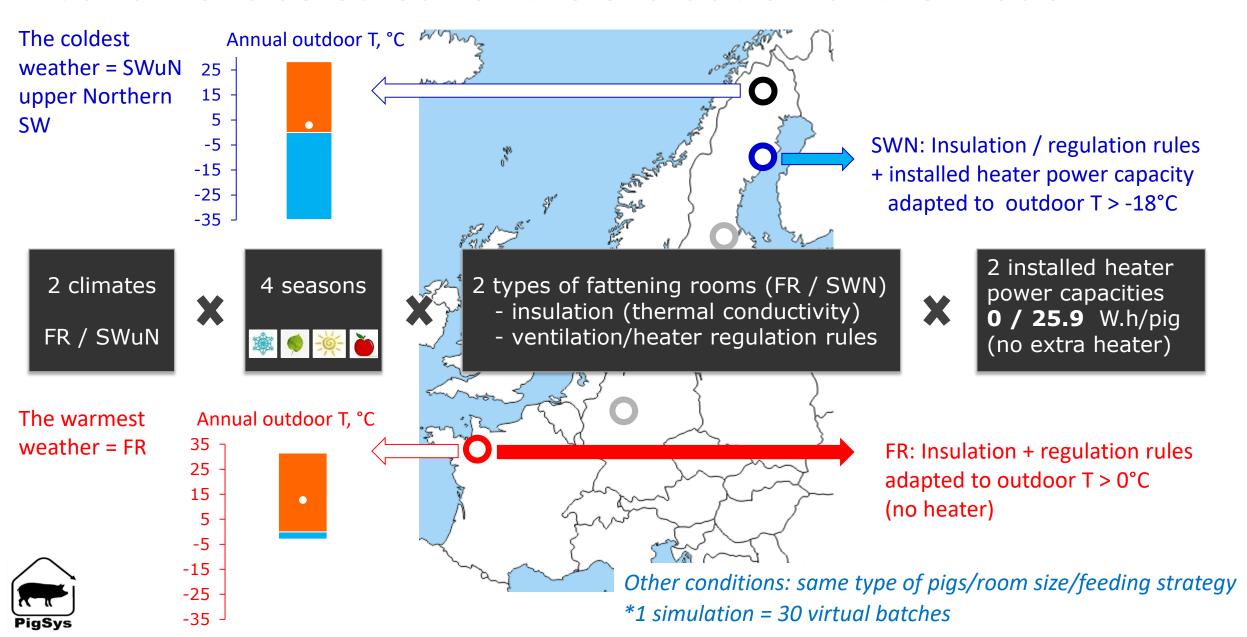
INPUTS

Pig growth model

Modified to simulate performance of the batch (Cadero et al., 2017)

Bioclimatic model

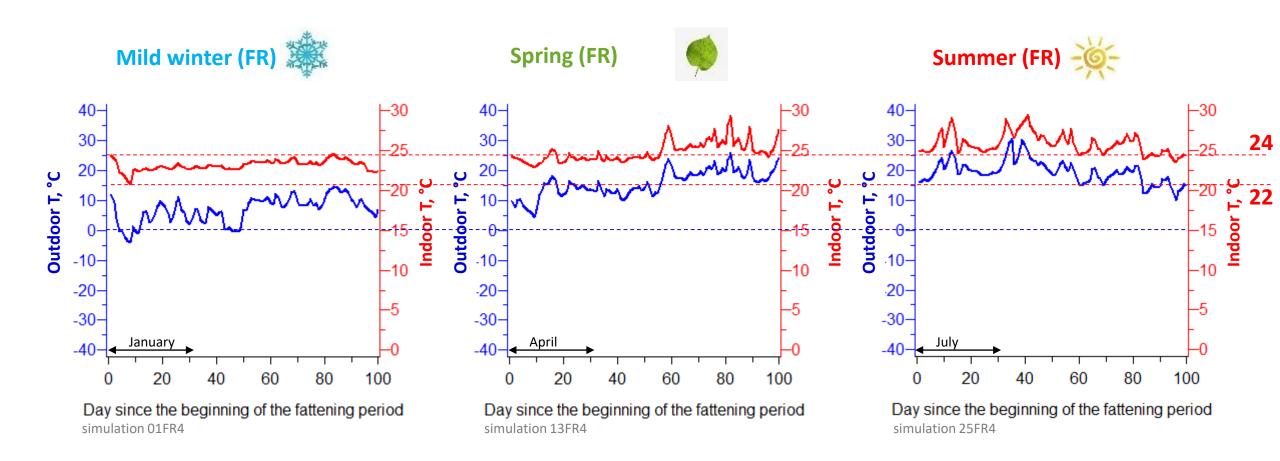
Thermal exchanges at the room level (Marcon et al., 2016)


THERMI Pig model

(Brossard et al., 2019 Modnut)

→ impact of technical options or **indoor** management rules on pigs' performance and energy use under different **outdoor** conditions

Conditions selected for the evaluation of the model



FR Climate

winter/spring/summer*

FR room

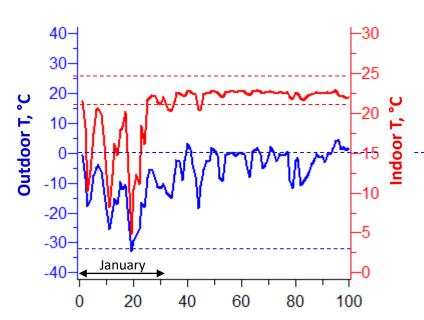
No heater

*Beginning of fattening on January 1st, April 1st, July 1st Example: batch n°18

FR Climate	winte	er/sprin	g/summ	ner	r FR room				
				Indirect energy consumption*					
	FI	ADG	FCR	Feed	Ventilation	Heater	Total		
	kg/d	g/d	kg/kg	%	%	%	MJ/pig		
Mild winter (FR) simulation 01FR4	2.36	895	2.65	90.3	9.7	-	1326		
Spring (FR) simulation 13FR4	2.29	877	2.62	89.4	10.6	-	1329		
Summer (FR) simulation 25FR4	2.25	861	2.62	88.8	11.2	-	1361		

SWuN Climate

Winter

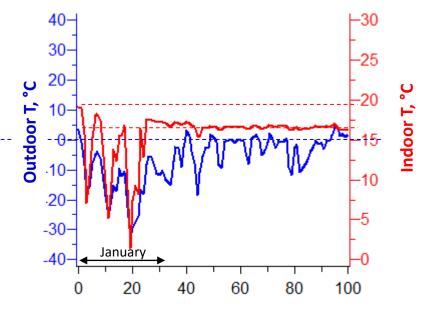

FR/SWN room

No heater

Insulation/ventilation FR

Thermal conductivity 5 cm 8 cm 7 cm $(2.6 \text{ W.m}^{-2}.^{\circ}\text{C}^{-1})$ 1.7 0.032 1.7

Ventilation regulation: 24 → 22°C



Day since the beginning of the fattening period simulation 49FR4

Insulation/ventilation SWN

Thermal conductivity 7 cm 15 cm 7 cm (4.3 W.m⁻².°C⁻¹) 1.7 0.036 1.7

Ventilation regulation: 19 → 16°C

Day since the beginning of the fattening period simulation 53SW5

Example: batch n°18

SWuN Cli		Win	iter		FR/SWN ro	No heater			
					Indi	irect energy	consumpt	tion*	
		FI	ADG	FCR	Feed	Ventilation	Heater	Total	1
		kg/d	g/d	kg/kg	%	%	%	MJ/pig	
FR Insulation Ventilation simulation 49FR4 SWN Insulation Ventilation simulation 53SWN5		2.39	892	2.68	90.5	9.5	-	1345	
		2.42	893	2.72	90.5	9.5	-	1363	
Massabie					T, °C 28	TOI TO			
et al. (1996)	24°C	2.26ª	876a	2.42 ^a	24 22 22	30000		al temperatur	e (UCT)
under	20°C	2.42 ^b	915 ^b	2.48 ^{ab}	20		The (Re	enaudeau et al.	, 2011)
controlled	17°C	2.50 ^c	900b	2.53 ^b	16 16 14		**************************************		
indoor T					12 10	COLD	ower critical t	emperature (LCT) (N

Mean from 30 batches, *1 kW.h = 13.3 MJ (EcoInvent, 2018)

ADG: average daily gain, FCR: feed conversion ratio, on average before the 1st delivery to slaughterhouse (30 batches)

SWuN Climate			Winter			FR/SWN re	No he	eater	
					Indi	tion*			
		FI	ADG	FCR	Feed	Ventilation	Heater	Total	
		kg/d	g/d	kg/kg	%	%	%	MJ/pig	
FR Insulation Ventilation simulation 49FR4 SWN Insulation Ventilation simulation 53SWN5		2.39	892	2.68	90.5	9.5	-	1345	
		2.42	893	2.72	90.5	9.5	-	1363	
Massabie					T, °C 28	TIO1			
et al. (1996)	24°C	2.26a	876ª	2.42a	24 22 22	THERM	Upper critica	al temperatur	e (UCT)
under	20°C	2.42 ^b	915 ^b	2.48 ^{ab}	20 18		TRALITY (R	enaudeau et al.	, 2011)
controlled	17°C	2.50 ^c	900 ^b	2.53 ^b	16 16 14	COLD		new = (LCT _{NRC} +	UCT)/2
indoor T		•	•		12 10	COLD	ower critical t	emperature (LCT) (NRC,

Mean from 30 batches, *1 kW.h = 13.3 MJ (EcoInvent, 2018)

ADG: average daily gain, FCR: feed conversion ratio, on average before the 1st delivery to slaughterhouse (30 batches)

Behavior of the model LCT NEW

LCT _{NEW}

SWuN Climate	Winter				FR/SWN ro	No heater			
				Indirect energy consumption*					
	FI	FI ADG FCR		Feed	Ventilation	Heater	Total		
	kg/d	g/d	kg/kg	%	%	%	MJ/pig		
FR Insulation Ventilation simulation 49FR7	2.39	883	2.71	90.5	9.5	-	1344		
SWN Insulation Ventilation	2.48	878	2.84	90.7	9.3	-	1434		

simulation 53SWN6

LCT _{NEW}

SWuN Climate Heater power HP Winter SWN room HP, W.h/pig 25.9 0 Installed HP adapted to outdoor T > -18°C 25 20 Indoor T, °C Minimum expected indoor T not Reduced intensity achieved when outdoor T < -18°C of cold exposure 5 = feed intake limited by the digestive January capacity at early stages of growth 20 60 100 Day since the beginning of the fattening period Outdoor T < 0°C simulations 53SW6, 56SW6 Reduced energy demand In practice, extra for thermoregulation heater systems -10 -20 -30 are used punctually Similar FI but more energy -40 available for growth

*Beginning of fattening on January 1st Example: batch n°18

Behavior of the model LCT NEW

SWuN Climate		Winter			SWN	l room		Heater p	ower H
HP, W.h/pig	0	25.9			0	25.9			
ADG, d/d	878	885							
FCR	2.84	2.81							
E feed, MJ/pig	1301	1279	-22				-22		
N output, kg/pig	3.94	3.85	-0.09				-0.09		
Electric	city - n	uclear		- partl	y rene				
E total, MJ/pig	1435	1510	+75		1364	1388	+24		
E feed, %	90.7	84.7			95.4	92.1			
E ventilation, %	9.3	8.7			4.6	4.5			
E heater, %	-	6.6			-	3.4			

Conclusions and perspective

- THERMI Pigmodel sensitive to

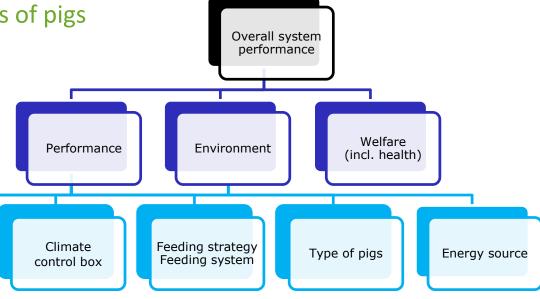
 - ⇒ Insulation/ventilation regulation
 - ⇒ Heater power capacity

- To be considered
 - ⇒ Punctual use of extra heaters
 - ⇒ Use of cooling systems

Perspective

⇒ Simulation with different feeding strategies / types of pigs

Sensor T


Outdoor/Indoor

Insulation

Equipment

→ additional local conditions

⇒ Real-time management of the whole system performance depending on local conditions

Acknowledgements

Thank you for your attention

This research was made possible by co-funding within the European Union's Horizon 2020 from the SusAn ERA-Net program

(grant agreement "No 696231")

and the French research agency ANR (grant agreement "No ANR-16-SUSN-0003-02")

