Use of mate allocation in pig crossbreeding schemes: a simulation study

D. Gonzalez-Dieguez¹; L. Tusell¹; A. Bouquet²,³; Z.G. Vitezica¹

1 GenPhySE. INRA, Université de Toulouse, Castanet-Tolosan 31326, France.
2 IFIP Institut du Porc, BP35104, 35651 Le Rheu, France.
3 France Génétique Porc, BP35104, 35651 Le Rheu, France.

70th Annual Meeting of the European Federation of Animal Science
INTRODUCTION

• Crossbreeding schemes are widely used in animal breeding for the purpose of exploiting the heterosis effect and breed complementarity.

• The main goal of crossbreeding is to improve the performance of crossbred animals.

• Mate allocation strategies that account for non-additive genetic effects could be of interest to improve the crossbred performance.
OBJECTIVE

• To simulate a two-way pig crossbreeding scheme and evaluate four scenarios that combine genetic evaluation models and mate allocation strategies in order to improve the performance of crossbred animals.
MATERIALS AND METHODS
QMSim software was used to create historical populations (HP) and form two divergent breeds.

A program in Fortran was developed to simulate a two-way crossbreeding scheme across 10 generations.

(Sargolzaei and Schenkel, 2009)
HISTORICAL POPULATIONS

Simulation parameters

<table>
<thead>
<tr>
<th>Generation</th>
<th>Size pop</th>
<th>N=2500</th>
<th>N=2500</th>
<th>N=300</th>
<th>N=2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>P1 80 x 400</td>
<td>Breed formation by Divergent phenotypic selection</td>
<td>P2 80 x 400</td>
<td>Breed2</td>
</tr>
<tr>
<td>2030</td>
<td>Breed1</td>
<td></td>
<td></td>
<td>Breed2</td>
<td></td>
</tr>
</tbody>
</table>

Genome: 18 pairs of chrs. of 120 cM

BREEDS

- Polymorphic SNPs in common (MAF>0.05): ~50 k
- \(8 \cdot \text{cov}(f_{\text{breed1}}, f_{\text{breed2}}) = 0.23 \) → Similar to the relatedness observed across Landrace and Yorkshire base populations in Xiang et al., (2018)

LD decay in breed populations

The decay of LD was similar to those observed in Landrace and Yorkshire breeds at 1 Mb (Boré et al., 2017).

70th Annual Meeting of the European Federation of Animal Science
TWO-WAY CROSSBREEDING SCHEME

Founders

Gen 0

Purebred 1

- Female: 200
- Male: 12

Gen 0 Crossbreds

- 2,400 descendants

Gen 1

- Female: 200
- Male: 400

Gen 1 Best 10%

- Female: 200
- Male: 12

Gen 1 Best 3%

- Female: 200
- Male: 12

Gen 2

- Female: 200
- Male: 400

Gen 2 Best 10%

- Female: 200
- Male: 12

Gen 2 Best 3%

- Female: 200
- Male: 12

Gen 3

- Female: 200
- Male: 400

Mate allocation strategies

- 2nd Best females

Gen 10

10 generations

Purebred 2

- Female: 200
- Male: 12

Gen 0 Crossbreds

- 2,400 descendants

Gen 1

- Female: 200
- Male: 400

Gen 1 Best 10%

- Female: 200
- Male: 12

Gen 1 Best 3%

- Female: 200
- Male: 12

Gen 2

- Female: 200
- Male: 400

Gen 2 Best 10%

- Female: 200
- Male: 12

Gen 2 Best 3%

- Female: 200
- Male: 12

Gen 3

- Female: 200
- Male: 400

10 generations

Same boars than used in purebred lines
PARAMETERS FOR CROSSBREEDING SCHEME

- Maternal trait: “e.g. Litter size”
- 2500 SNPs were randomly selected to be QTL.
- Inbreeding depression was assumed to be -1 piglet per 10% increase in genomic inbreeding.
- Breed specific QTL effects were sampled from a MVN distribution with correlation between the three populations: Additive and dominant genetic variance from Xiang et al. (2016).

\[
\begin{align*}
 h^2_{1} &= 0.1 \\
 d^2 &= 0.005 \\
 r_{x,y} &= 0.5 \\
 r_{x,z} &= 0.5 \\
 r_{y,z} &= 0.5
\end{align*}
\]

\[
\begin{align*}
 h^2_{2} &= 0.1 \\
 d^2 &= 0.011 \\

Genetic correlation between the purebred and crossbred populations was assumed to be
\[r_{x,y} = r_{x,z} = r_{y,z} = 0.5.\]

\[d^2: \text{ratio dominance variance to phenotypic variance.}\]
GENOMIC EVALUATIONS

Two evaluation models were implemented:

- **Univariate model:**
 - Only purebred information (genotypes and phenotypes)
 - Each purebred population was evaluated independently
 - Additive effects ($GEBV$) + genomic inbreeding
 - Implemented with Blupf90 software (Misztal et al. 2012).

- **Tri-variate model:**
 - Purebred and crossbred information (genotypes and phenotypes)
 - Performances of purebreds and crossbreds were considered as three different traits.
 - Estimation of additive and dominance SNP effects (correlated across populations) and genomic inbreeding
 - $GEBV$ on the purebred scale and $GEBV_{cp}$ for crossbred performance were calculated from SNP effects.
 - Implemented with a home made software.
SCENARIOS

Traditional scheme

SCENARIO 1:
- **Evaluation:** Univariate model
- **Selection within purebred:** $GEBV$
- **Creation of crossbreds:** No mate allocation (MA) strategy.

SCENARIO 2:
- **Evaluation:** $GEBV + MA(F_{min})$
- **Selection within purebred:** $GEBV$
- **Creation of crossbreds:** Mate allocation (MA) strategy to minimize expected future inbreeding.

Univariate model

<table>
<thead>
<tr>
<th>SCENARIO 1</th>
<th>SCENARIO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GEBV$</td>
<td>$GEBV + MA(F_{min})$</td>
</tr>
</tbody>
</table>

Tri-variate model

<table>
<thead>
<tr>
<th>SCENARIO 3</th>
<th>SCENARIO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GEBV_{cp}$</td>
<td>$GEBV_{cp} + MA(TGV_{max})$</td>
</tr>
</tbody>
</table>

SCENARIO 3:
- **Evaluation:** Tri-variate model
- **Selection within purebred:** $GEBV_{cp}$
- **Creation of crossbreds:** No mate allocation (MA) strategy.

SCENARIO 4:
- **Evaluation:** Tri-variate model
- **Selection within purebred:** $GEBV_{cp}$
- **Creation of crossbreds:** Mate allocation (MA) strategy to maximize expected total genetic value.

COMPARISON OF SCENARIOS

- **Within-purebred:**
 - Genetic response based on TBV

- **Crossbreds:**
 - Genetic merit based on true total genetic values (**True TGV**).
RESULTS
• Selecting purebred animals by their $GEBV$ produced the highest genetic response compared to selection on $GEBV_{cp}$.
CROSSBREDS

- Selecting purebred animals by crossbred performance ($GEBV_{cp}$) produced the highest gain in true total genetic value on crossbreds.

- The use of mate allocation by minimizing inbreeding or maximizing expected TGV did not improve the crossbred performance in this simulation study.
CONCLUSIONS

• Selecting purebred animals for crossbred performance ($GEBV_{cp}$) produced the highest gain in crossbred performance, however, the genetic response within purebred populations is reduced compared to selection on $GEBV$.

• The use of mate allocation strategies did not improve the crossbred performance in this simulation study.
Acknowledgements

• DGD is funded by France Génétique Porc, RAGT and INRA.

• Work was supported by INRA SELGEN metaprogram, project OptiMaGics. Project was partly supported by Toulouse Midi-Pyrénées bioinformatics platform.
Thanks for your attention!!