Effects of diet microbial phytase, vitamin C and copper levels on cadmium retention in slaughtered pigs

Eric Royer and Nathalie Lebas
Ifip-institut du porc, France
Cadmium in agricultural soils

Agricultural soil concentration

Total deposition in 2009

Report 'Sustainable Agriculture and Soil Conservation'
eussoils.jrc.ec.europa.eu

EMEP data
www.msceast.org

EAAP 2013, S39b

Nantes, August 28th, 2013
Background and aims of the study

Regulation and its evolution
- maximum levels in feed- and foodstuffs
 - food (Regulation 1881/2006 of Commission)
- EFSA Scientific report (2012): average Cd dietary exposure too high
- Commission’s review of Cd maximum levels: reducing Cd in foods

Respecting pig feed limits ≠ compliance of pork offals
- continuous exposure < max $[\text{Cd}]_{\text{diets}} \rightarrow [\text{Cd}]_{\text{kidney}} >$ tolerance (Royer and Lebas, 2010a,b).
- EU pig tissue controls: 0.6 % in 2009 & 1.2 % in 2010 non compliants

How to limit Cd accumulation in pig kidneys?
- effects of microbial phytase, vitamin C and copper in diets
Material and methods: 4 diets

Non contaminated (control) vs contaminated diets

(± 0.5 mg Cd/kg = maximal limit in feeds)

- **PHYT**: with phytase (1000 FTU),
- **PHOS**: without phytase (+ 0.6 g P),
- **CuVitC**: with phytase, vitamin C (1000 then 700 mg/kg) and lower Cu content (44 mg/kg in phase 2 diet).

Contamination resulting from raw materials

- Limit for feed materials
- Experimental feedingstuffs
- mean [Cd] ±SD , EFSA 2004
Experimental design: 36 female pigs

Control Phytase Phosphorus Phyt / Cu-/ VitC+

Phase 2
Growing
Finishing

13.5 kg → 113 kg

Nantes, August 28th, 2013 EAAP 2013, S39b
Results: effect of diets on kidney Cd concentration

Feed: P < 0.001
Exposure time: P < 0.001

Kidney Cd concentration in μg/kg

- Phytase
- Phosphorus
- Phyt/Cu-/VitC+

Max limit 1881/2006
Commission proposal

Control, d27, d69, d132
Discussion

Effect of phytase

- Phytase \(\rightarrow \) renal Cd of pigs fed 0.78 mg Cd/kg (Zacharias et al., 2001)
- Microbial phytase \(\rightarrow \) liberation of Cd phytate

Effect of copper

- \([\text{Cd}]_{\text{kidney}} \times 2 \leftarrow [\text{Cu}]_{\text{fattening feeds}} \rightarrow 175 - 200 \text{ mg/kg} \) (Rambeck et al, 1991. Rothe et al, 1994.)
- \([\text{Cu}]_{\text{fattening feeds}} \) now limited 25 mg/kg, reducing \([\text{Cu}]_{\text{phase 2}} \) ?
- Cu \(\rightarrow \) MT’s synthesis. Displacement of Cu from MTs by Cd ?

Effect of vitamin C

- Influence shown in rats (Grosicki, 2004) and pigs (Rothe et al., 1994)
- Supplemental vitC \(\downarrow \) Cd distribution and \(\uparrow \) Fe absorption.
Conclusions

Feed and food safety issues

- Lower maximum limits for kidneys under discussion
- Role of feeding practices: information of feed manufacturers about quality of mineral feedstuffs

Adjusting the diet parameters

- Phosphorus and calcium levels, supplemental phytase
- Copper content
- Vitamin C addition

Nantes, August 28th, 2013 EAAP 2013, S39b
Thank you for your attention.

Financial support was provided by the French national program for agricultural development. The authors thank all colleagues and students of the IFIP research center in Villefranche-de-Rouergue (France).

www.ifip.asso.fr