Produits de nettoyage et désinfection

Détecter des résidus sur les surfaces de travail

Plusieurs méthodes sont disponibles pour détecter les résidus des produits de nettoyage et de désinfection dans les entreprises de transformation de la viande.

Les méthodes directes de détection sur les surfaces de travail donnent de meilleurs résultats que les dosages des résidus dans les eaux de rinçage.

Afin de maîtriser la contamination microbiologique des denrées par l'intermédiaire des surfaces de travail, les industriels réalisent régulièrement des opérations de nettoyage et désinfection. Une procédure de rinçage doit être appliquée après ces opérations, afin d'éliminer des surfaces les produits utilisés pour le nettoyage ou la désinfection. De nombreux auteurs ont souligné l'importance du rinçage afin de réduire la contamination du produit alimentaire par des molécules chimiques utilisées pour ces opérations de sanitaire.

Cependant, aucun texte réglementaire sur la quantité de résidus de ces produits sur les surfaces de travail n'existe dans la CEE. Il est cependant important de pouvoir contrôler l'efficacité des procédures de rinçage. C'est pourquoi nous avons testé différentes méthodes de recherche de ces résidus soit dans les eaux de rinçage soit directement sur les surfaces. DOSER LES RÉSIDUS DANS L'EAU DE RINÇAGE

Par la méthode CFPI (1984) de dosage du chlore actif, nous avons observé une coloration rose indiquant la présence de chlore pour des solutions d'hypochlorite de sodium dont la concentration en chlore était supérieure ou égale à 0,62 ppm. Dans le cas du détergent alcalin chloré, la limite de détection était 10 fois plus élevée soit 6 ppm de chlore. Pour le dosage du chlore par la méthode Schmidt et Gremling, nous avons réalisé une courbe étalon avec de l'hypochlorite de sodium (Figure 1). Le seuil de détection de la méthode est de 1,25 ppm et la relation entre quantité de chlore actif et densité optique est linéaire entre 1,25 et 6,25 ppm.

Cependant, lorsque nous avons réalisé ce même dosage sur des solutions de détergent alcalin chloré, le seuil de détection est passé à 3 ppm. Nous avons par ailleurs, montré que c'est la présence de NaOH dans le produit commercial qui diminue la densité optique. Ainsi la DO obtenue avec une solution à 2,5 ppm d'hypochlorite passe à 0,002 (blanc = 0,000 ± 0,003) lorsque cette solution contient 25 ppm de soude (le rapport chlore actif / NaOH est dans ce cas le même que celui du produit commercial).

DOSEURS DE CHLORÉ DANS L'EAU DE RINÇAGE

Par la méthode CFPI (1984) de dosage du chlore actif, nous avons observé une coloration rose indiquant la présence de chlore pour des solutions d'hypochlorite de sodium dont la concentration en chlore était supérieure ou égale à 0,62 ppm. Dans le cas du détergent alcalin chloré, la limite de détection était 10 fois plus élevée soit 6 ppm de chlore. Pour le dosage du chlore par la méthode Schmidt et Gremling, nous avons réalisé une courbe étalon avec de l'hypochlorite de sodium (Figure 1). Le seuil de détection de la méthode est de 1,25 ppm et la relation entre quantité de chlore actif et densité optique est linéaire entre 1,25 et 6,25 ppm.

Cependant, lorsque nous avons réalisé ce même dosage sur des solutions de détergent alcalin chloré, le seuil de détection est passé à 3 ppm. Nous avons par ailleurs, montré que c'est la présence de NaOH dans le produit commercial qui diminue la densité optique. Ainsi la DO obtenue avec une solution à 2,5 ppm d'hypochlorite passe à 0,002 (blanc = 0,000 ± 0,003) lorsque cette solution contient 25 ppm de soude (le rapport chlore actif / NaOH est dans ce cas le même que celui du produit commercial).
LES PRODUITS DE NETTOYAGE

Les produits de nettoyage et désinfection étudiés étaient des produits commerciaux utilisés dans l’industrie de la viande et des produits de charcuterie :
- un détergent alcalin,
- un détergent alcalin chloré,
- un détergent acide,
- un désinfectant à base de glutaraléhyde et d’un ammonium quaternaire (chlorure de Laurylldiméthylbenzylammonium),
- un désinfectant à base d’un ammonium quaternaire (bromure de Laurylldiméthylbenzylammonium) et d’une diamine (Laurylpropylendiamine).

LES MÉTHODES DE DÉTECTION

Méthodes indirectes

Détection du chlore actif en solution
A 90 ml de la solution à tester ajouter 5 ml d’une solution d’iodure de potassium à 5% (m/v). Après homogénéisation ajouter 5ml d’héxane. Agiter l’ensemble et laisser décanter. La coloration rose de l’héxane indique la présence de chlore.

Dosage du chlore actif en solution
A 2,5 ml de la solution à doser ajouter 0,5 ml d’une solution d’amidon à 2% (m/v) et 0,5 ml d’une solution d’iodure de potassium à 1% (m/v). La densité optique est mesurée à 580 nm contre un blanc où la solution à doser est remplacée par 2,5 ml d’eau ultra pure (système Milli-Q, Millipore).

Détection d’ammonium quaternaire en solution
A 25 ml de la solution à tester ajouter 2,5 ml d’une solution de bicarbonate de sodium à 10% (m/v), 0,1 ml d’une solution de bleu de bromophénol à 0,04% (m/v) et 10ml de chloroforme. Agiter l’ensemble et laisser décanter. La coloration bleue du chloroforme indique la présence d’ammonium quaternaire.

Spectrométrie UV
Il est possible d’examiner des solutions de produits de nettoyage et désinfection par spectrométrie UV 19. Pour cela nous avons réalisé des spectres entre 160 et 700 nm des solutions de détergent de désinfectant mais également de leurs principes actifs. Les spectres ont été obtenus à l’aide d’un spectromètre Beckman 135 contre de l’eau Milli-Q (Millipore).

En ce qui concerne la détection des ammoniums quaternaires en solution par la méthode Henkel 8, le seuil de détection est de 5 ppm, que la mesure soit effectuée sur les principes actifs (chlorure de Laurylldiméthylbenzylammonium ou bromure de Laurylldiméthylbenzylammonium) ou sur les produits commerciaux. Les spectres obtenus en spectromètre UV montrent que tous les produits commerciaux testés présentent un pic d’absorption à 193 nm. À cette longueur d’onde, nous avons pu déterminer le seuil de détection des différents produits en solution dans l’eau (Tableau 1).

Méthodes directes

Spectrométrie infra-rouge
La spectrométrie infra-rouge a également été utilisée, pour rechercher la présence de résidus directement sur les surfaces mais également de souillures organiques 6, 14, 18.

Pour cette étude, nous avons utilisé un spectromètre BrukerIFS 66 équipé d’un cristal d’ATR en ZnSe à 45°. La résolution spectrale était de 4 cm⁻¹ et la précision de 0,01 cm⁻¹. Pour chaque analyse, 100 scans étaient effectués et moyennés afin d’obtenir un bon rapport signal/bruit.

Les spectres sur les produits (jus de cuisson, produits de nettoyage et désinfection et leurs principes actifs) ont été obtenus sur les solutions des produits en contact direct avec le cristal d’ATR.

Les spectres des bandes convoyées en polyuréthane (propres ou contaminées) ont été obtenus par contact direct des surfaces avec le cristal d’ATR.

OSEE (Optically Stimulated Electron Emission)
Une autre technique d’inspection directe a été testée sur polyuréthane et inox, il s’agit de l’OSEE (Optically Stimulated Electron Emission). Dans ce cas, on stimule la surface par une lumière UV, qui provoque le décrochage d’électrons. Le signal mesuré est un courant électrique qui correspond au nombre d’électrons décrochés. Ce nombre dépend de la composition de la surface. Il est par conséquent possible de connaître le degré de propreté d’une surface en comparant le signal obtenu (nombre d’électrons décrochés) pour la surface à examiner avec celui de la surface propre (signal de référence). Le signal obtenu dépend de nombreux facteurs tels que la distance du capteur par rapport à la surface, la température ambiante, la pression atmosphérique, l’épaisseur du film de la souillure, l’humidité, la charge statique des surfaces (mise à la terre) et le temps d’exposition de la surface à la lumière UV 🌃.

Pour cette étude, les essais ont été réalisés en statique et en dynamique (la surface était mise en mouvement à une vitesse de 210 mm/min).
L’IRTF POUR LES SURFACES EN POLYURÉTANE

Nous avons pu montrer que le seuil de détection de protéines adsorbées sur des surfaces était de 2,5 µg/cm², soit 20 couches de protéines ou encore un film d’une épaisseur d’environ 0,25 µm. Les ammoniums quaternaires tels que le Lauryl propylène diamine (principe actif du désinfectant à base d’ammonium quaternaire) donnent des pics à 1200 cm⁻¹ et entre 1525 et 1575 cm⁻¹.

Pour le détergent dont le principe actif est l’acide phosphorique, le pic caractéristique se situe à environ 1000 cm⁻¹ et pour le détergent alcalin il y a 2 pics caractéristiques à 3460 cm⁻¹ et 854 cm⁻¹.

De la même façon, il a été possible de détecter la présence de résidus de nettoyage ou désinfection sur les surfaces en polyuréthane. Le seuil de détection pour chacune de ces molécules est présenté dans le tableau 3. Après un cycle d’encrassement du polyuréthane par de la gélatine et de nettoyage par le détergent alcalin, il est possible de détecter des résidus de gélatine et du détergent.

L’OSEE DÉTECTE DES QUANTITÉS TRÈS FAIBLES DE SOUILLURES

 Avec la technique OSEE, il est possible de détecter la présence de molécules adsorbées sur une surface par comparaison des signaux électriques obtenus sur la surface propre et sur la surface «encrassee».

Ainsi, l’ensemble des produits testés ont pu être détectés sur les surfaces de polyuréthane et d’inox. Le signal étant augmenté ou diminué selon les cas (figure n° 2).

Afin de quantifier les résidus (s’ils sont connus), il est possible d’établir une droite de régression entre l’intensité du signal et la quantité de résidus présent sur les surfaces. Cependant, à partir d’une certaine quantité de souillure, la relation entre le dépôt sur la surface et le signal OSEE n’est plus linéaire (Figures 3 et 4).

Nous avons également étudié l’évolution de l’état de surface en polyuréthane au cours de cycles d’encrassement et de nettoyage. Nous avons ainsi montré qu’il existait un conditionnement des surfaces par la souillure et le produit de nettoyage (Figure 5).

Le nettoyage n’assure pas un retour à l’état de surface initial.

PRIVILÉGIER DES MÉTHODES DIRECTES

L’objectif de cette étude était de tester différentes techniques chimiques ou physiques directes ou indirectes de détection et le cas échéant de dosage des résidus de produits de nettoyage et désinfection sur les sur-
les méthodes colorimétriques sur les eaux de rinçage, se sont révélées insuffisantes pour détecter de faibles quantités de résidus. Par contre, la spectrométrie UV permet de détecter une quantité plus faible de résidus. Ceci est bien vérifié avec les produits de désinfection. Pour l’ensemble des produits commerciaux, nous avons montré qu’il existait un pic d’adsorption à 190 nm. Ce pic peut être lié à la présence d’un composant commun à l’ensemble des produits, ceux-ci provenant tous de la même société. Par ailleurs, Perkampus et al 11 ont montré que NaOH présentait un maximum d’adsorption à 187 nm et que de nombreux mélanges organiques ont un pic d’adsorption compris entre 190 et 200 nm.

Nous avons donc montré que la détection de résidus de produits de nettoyage et désinfection est possible par spectrométrie UV dans de l’eau ultrapure.

Cependant, elle est difficilement applicable en industrie agro-alimentaire, en effet la présence d’impuretés dans l’eau du réseau perturbe la mesure dans l’UV, pour la recherche de molécules en très faible concentration.

Les molécules chimiques apportées par les produits de nettoyage et désinfection peuvent s’adsorber sur les surfaces et ne pas être décrochées par les opérations de rinçage, c’est pourquoi, il est important d’avoir à sa disposition des méthodes d’inspection directe des surfaces.

Nous avons testé deux de ces méthodes : la spectrométrie infrarouge à transformir de Fourier (IRTF) et l’OSEE.

L’IRTF permet non seulement de détecter la présence de molécules étrangères sur la surface, mais également de quantifier la molécule présente sur les surfaces. Par ailleurs, l’utilisation de fibre optique permet de contrôler des sites précis et la rapidité de la mesure permet de multiplier les points de contrôle.

La sensibilité de cette méthode est fortement augmentée lorsque l’on réalise des soustractions de spectres (spectre de la surface encrassée - surface propre). La quantification du contaminant (souillure organique ou résidus de nettoyage) peut s’effectuer après un travail de calibration sur la hauteur des pics 11.

En ce qui concerne la technique OSEE nous avons montré qu’il était possible de détecter des quantités...
très faibles de souillures organique ou chimique sur les surfaces de travail. Lorsque la souillure est connue, il est possible de réaliser un travail de calibration afin de connaître la quantité de molécules encrassantes présente sur la surface. Cependant, au-delà d'une épaisseur donnée le signal émis n'évolué plus.

En effet, lorsque les molécules encrassantes sont en faible quantité sur la surface, la lumière atteint la surface (inox ou polyuréthane) et le signal émis correspond aux électrons arrachés à la souillure et à la surface. Lors d'un film encrassant plus épais, la lumière UV n'atteint pas la surface et le signal émis correspond à celui de la contamination pure.

Cette technique rapide et facile d'utilisation ne peut donc être utilisée que pour des souillures connues et qui présentent un signal différent de celui de la surface à contrôler. Les méthodes colorimétriques et spectrométriques UV se sont avérées insatisfaisantes. Par contre, les méthodes OSEE et FTIR-ATR devraient permettre de diminuer les risques liés à la présence de résidus de produits de nettoyage et désinfection sur les surfaces. Pour la spectrométrie infrarouge, l'utilisation d'une fibre optique est indispensable pour que cette technique soit applicable en industrie agroalimentaire.

Figure 5

Signal OSEE obtenu au cours de cycle d'encrassement par du gras et de nettoyage

BIBLIOGRAPHIE